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LETTER TO THE EDITOR

Singularity spectrum of a fractal diagram for a Hamiltonian
system
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† Department of Physics, Faculty of Pharmacy, Vojvode Stepe 490, Beograd, Yugoslavia
‡ Institute of Physics, PO Box 57, Beograd, Yugoslavia

Received 20 September 1995

Abstract. We determine numerically the relevantf (α) spectrum of scaling indices for the
fractal diagram of the standard map. Infinite partitions, related by the Gauss transformation and
an appropriate measure had to be used in order to obtain convergent results. This choice of the
measure and the partitions is motivated by the method of modular smoothing.

Fractal diagrams and critical functions describe the stability of periodic orbits and breakup
of invariant tori in typical Hamiltonian systems with two degrees of freedom. These are
complicated fractal functions of a frequency (or a frequency ratio), with a non-trivial,
globally self-similar structure. The fractal structure of these objects is related to the famous
problem of small denominators, and to the problem of approximating irrational numbers by
rationals. Usually, the global scaling of fractals originating in similar dynamical problems
is described by the correspondingf (α) and other ‘thermodynamic’ functions [1]. It is
the purpose of this letter to report our calculations of an appropriatef (α) function for
the fractal diagram of a typical area-preserving map, i.e. the standard map given by the
following equations:

rn+1 = rn − (k/2π) sin(2πθn)

θn+1 = θn + rn+1 mod 1.
(1)

On the other hand, global scaling of fractal diagrams and critical functions of typical
Hamiltonian systems with two degrees of freedom is also explored and used in the theory of
modular smoothing [2]. In our construction of the functionf (α) for the fractal diagram we
were guided by a result from the theory of modular smoothing, which indicates the scaling
function appropriate to this problem [3].

Let us first briefly recapitulate definitions of the fractal diagram [4] and the critical
function [5]. The fractal diagram for the standard map, denoted byk(m/n), is a function
of the frequency, related to periodic orbits, such that a periodic orbit with frequencym/n

is stable (elliptic) when the parameterk satisfiesk < k(m/n), and unstable (hyperbolic)
whenk > k(m/n). The critical functionK(ν) is also a function of the frequency, related to
invariant circles, such that ifk < K(ν) a quasiperiodic orbit with frequencyν fills a smooth
invariant circle. Ifk > K(ν) then there is no smooth invariant circle filled by quasiperiodic
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Figure 1. Fractal diagram for the standard map.

orbits with frequencyν. The two functions are complicated fractal objects, and are related
by the Greene conjecture [6]

lim
m/n→ν

k(m/n) = K(ν) . (2)

The fractal diagramk(m/n) for the standard map is illustrated in figure 1.
The full complexity of scaling of the fractal diagram can be described by a spectrum

of critical exponentsα of an appropriate measure, and by their densitiesf (α). However,
our construction of thef (α) function differs from the applications of the formalism in most
cases of fractals embedded in one-dimensional sets. In our case the support of the measure
is the full interval [0, 1], but the measure itself has a fractal density determined byk(m/n).
The functionf (α) is then a density of points in [0, 1] wherek(m/n) has singularities with
the same exponent.

A sequence of partitions of the interval [0, 1] is defined using the Gauss transformation:
x → G(x) ≡ x ′ = 1/x − {1/x}, where{1/x} denotes the integer part of 1/x. The zero
level partition is the interval [0, 1] itself. The first level partition contains all intervals of the
form [1/n, 1/n − 1], n = 2, 3 . . . . The intervals in the second level partition are obtained
by applying the inverse of the Gauss transformation on the boundary points of the intervals
in the first level partition. Each interval [1/n, 1/n − 1] at the first level gives an infinite
number of intervals of the second level partition. Thus each partition (except at the zero
level) has an infinite number of elements (intervals), and intervals of the(i − 1)th level
partition are related to the intervals of theith level partition by the Gauss transformation.
The partition function is now defined by the following infinite sum:

0i(q, τ ) =
∑

j

p
q

j

lτj
(3)

where

pj = |k(mj/nj ) − k(mj−1/nj−1)|nj (4)

and

lj = |mj/nj − mj−1/nj−1| . (5)
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Figure 2. The functionτ(q).

Figure 3. The spectrum of scaling indicesf (α) for the fractal diagram.

mj/nj andmj−1/nj−1 are the boundary points of thej th interval of theith level partition.
The exponentsq and τ are determined from the conditions that the infinite sums are
convergent and that0i(q, τ ) → 1 for large enoughi. Naturally, this is possible only
if the measure is chosen appropriately.

In practice the infinite sums0i(q, τ ) have to be truncated in such a way that the value
of τ(q) which makes0i(q, τ ) = 1 is not changed by adding the first neglected terms in the
sums. Our calculations always satisfied this requirement.

Our choice of the measure (4) and the partitions related by the Gauss transformation is
motivated by a result from the theory of modular smoothing. One of the main results in
this theory is that the function

l1(m/n) = ln k(m/n) − m

n
ln k(G(m/n)) (6)

whereG(m/n) denotes the Gauss transformation ofm/n, is continuous, despite the fact
that k(m/n) is an everywhere discontinuous function. Thusk(m/n)n/k(G(m/n))m is
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a continuous function which describes the scaling of the fractal diagram with respect
to the Gauss transformation. Indeed, some other measures, like for examplepj =
|k(mj/nj ) − k(mj−1/nj−1)|, or other partitions, like for example the one given by the
Farey tree, do not give convergent results.

Once the functionτ(q) is calculated, the functionf (α) is given by the Legandre
transformation ofτ(q),

α(q) = dτ

dq
f (q) = qα(q) − τ . (7)

Eliminating q gives the functionf (α). Our numerical results are presented in figures 2
and 3. The spectrum of the corresponding generalized dimensionsDq = (q − 1)τ is given
in figure 4. The convergence is visually better illustrated usingDq ’s from the successive
levels rather than the correspondingτ(q). Let us stress once more that only with the choice
of the measure given by (4) and the partitions related by the Gauss transformation were we

Figure 4. (a), (b) The figures illustrate the convergence of the spectrum of generalized
dimensionsDq for the fractal diagram. Shown are the values ofDq determined from0i at
levels i = 3, 4, 5, 6, 7. TheDq curves for negativeq are almost indistinguishable.
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able to obtain the convergent results. It would be interesting to examine more closely the
relation between the functionsl1(m/n) andf (α).

Finally, we believe that our results for the fractal diagram of the standard map are
universal for a class of Hamiltonian systems with two degrees of freedom [7].
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